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Abstract The derivative of the associated Legendre function of the first kind of inte-
ger degree with respect to its order, d P (z)/d u, is studied. After deriving and investi-
gating general formulas for p arbitrary complex, a detailed discussion of
(0P (2) /0]l u=+m, where m is a non-negative integer, is carried out. The results are
applied to obtain several explicit expressions for the associated Legendre function of
the second kind of integer degree and order, Q,jf’” (z). In particular, we arrive at formu-
las which generalize to the case of Q,jf’” (2) (0 < m < n) the well-known Christoffel’s
representation of the Legendre function of the second kind, Q,(z). The derivatives
(8% P (2) /81> L y=m» [0 Q1 (2)/O1t]y=m and [0 Q" 1 (2)/9t] =, all With m > n,
are also evaluated.

Keywords Legendre functions - Parameter derivative - Special functions

1 Introduction

It is the purpose of the present paper to contribute to the theory of special functions
of mathematical physics and chemistry. Specifically, we shall add to the knowledge
about the associated Legendre functions of the first, P}’ (z), and second, Q% (z), kinds
(cf, e.g., [1-29]).! We shall touch two particular problems. First, we shall investigate

! The associated Legendre function of the second kind defined by Barnes [10] differs from the coun-
terpart function of Hobson [12] used in the present paper. The relationship between the two functions
is: [QY (2)IBames = (e 7™H sin[x (v + )]/ sin(v)} QY (2).
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the derivative of the associated Legendre function of the first kind of integer degree
with respect to its order. Second, it will be shown that the results of that investigation
may be used to construct, in a straightforward and unified manner, several known rep-
resentations of the associated Legendre functions of the second kind of integer degree
and order, Q}'(z); in the past those representations were obtained by other authors
with the use of a variety of, usually more complicated, techniques. In addition, some
possibly new expressions for Q7 (z) will be also presented. They are potentially useful
because the function Q7 (z) is encountered in solutions of numerous boundary-value
problems of applied mathematics, e.g., in electro- and magnetostatics or in the theo-
ries of diffusion and heat conduction in spherical, spheroidal (both prolate and oblate),
and conical geometries [15]. The function Q! (z) appears also in the Neumann expan-
sion [30] (cf also [15, Eq. 10.3.53]) for the inverse distance between two points. This
expansion is exploited in quantum molecular physics, in studies of bound [31-37] and
scattering [38,39] states of diatomics to handle the interelectronic Coulomb repulsion
term in the prolate spheroidal coordinates.

The literature concerning the derivative 3 P}’ (z)/du is very limited. Surprisingly,
no relevant expressions have been given in [29], which otherwise contains a large
collection of parameter derivatives of various special functions. Several variants of
the formula

P (2)
5 =y +DP,(2) + 0v(2), (1.1)
n n=0
where
1 dI')
== 1.2
¥ ($) rO (1.2)

is the digamma function [14,20,23,25,40], may be found in [23, p.178]. Robin
[18, Eq.333,p. 175] gave the following representation” of 3 P} (z)/du:

apk 1 1
v (@) = —P#(z)lnz+
ou 2 -

+(Z+1)“/2°° FTw+k+Dyk—p+1 (z-1)
S —k+ Dl —p+ 1)\ 2 )
(lz—1] <2). (1.3)

z—1

2 The notation used in the present work differs in some respects from that adopted by Robin in [17-19]. In
particular, the digamma function used by Robin was defined as

1 dr@c+1)

W(§)=F(§+1) i

rather than as in our Eq. 1.2. Also, one should be warned that in Eq.(333) on p. 175 in [18] the factor p!in
the denominator of a summand is missing.
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Brown [41], being apparently unaware of the Robin’s finding, rederived the expression
in Eq. 1.3 in the particular case of v = n € N and used it to find a representation of
Q™ (z) suitable for numerical purposes. An application of the derivative 3 P}’ (z)/du
to the evaluation of the integral fC dz [P} (2)1?/(z% — 1), where C is the contour start-
ing from z = 0 and returning to it after a positive circuit round the point z = 1, was
presented by Watson [42].

The detailed plan of the paper is as follows. In Sect. 2, we shall summarize these facts
about the associated Legendre functions of the first and second kinds of integer degrees
which will find applications in later parts of the work. In Sect. 3, the derivative of the
associated Legendre function of the first kind, d P} (z)/du (with z € C\ [—1, 1]), is
investigated. After general considerations forming Sect. 3.1, where no restrictions are
imposed on the order u of the Legendre function, in Sects. 3.2 and 3.3 we focus on the
derivatives [0 P#(z)/au]uzim with m € N. The cases of 0 < m < n and m > n are
treated separately. A brief discussion of the derivative d P (x)/du (with x € [—1, 1])
is contained in Sect. 3.4. Section4 presents some applications of the results of Sect. 3.
In Sect.4.1, we obtain several explicit representations of the associated Legendre
function of the second kind of integer degree and order, Q,fm (z) and Q,fm (x). Some
of these representations seem to be new, particularly these ones which generalize the
well-known Christoffel’s formulas for O, (z) and Q,,(x). Finally, in Sects. 4.2 and 4.3,
the derivatives [9% Py’ (2) /3 1% 1;=m.» [0 Ol (2) /3] uem» and [3 Q" (2)/3 4] =, all
withm > n, are expressed in terms of the derivatives [d PH(Ez)/0u] u=—m- The paper
ends with an appendix, in which an auxiliary formula used in Sect. 3.1 is derived.

Throughout the paper, we shall be adopting the notational convention according to
whichv e C,ueC,neN,me N, x € [—1,1],and z € C\ [—1, 1], the latter with

—r < arg(z) <m, —r <arg(z£1) <m, (1.4)
hence,
—z=e¥Tz, —z+1=eFT(z—1), —z—1=eF"(z+1) (argz) Z0). (L.5)

Furthermore, it will be understood that if the upper limit of a sum is less by unity than
the lower one, then the sum vanishes identically.

The definitions of the associated Legendre functions of the first and second kinds
used in the paper are those of Hobson [12].

2 The associated Legendre functions of integer degrees

The material presented in this section, to be referred to in later parts of the paper, is
based primarily on [12,17,18].
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2.1 The associated Legendre function of the first kind of integer degree

The associated Legendre function of the first kind of a non-negative integer degree n
and an arbitrary complex order i may defined as

Pl = D)

1 ThFp+l) (z+ 1)“/2

FAFwlrn—pn+1) \z-1
1
x 2 Fy (—n,n+1;1w; :2”) @.1)

or equivalently as

/2
Ph(z) = 1 FrmFpu+l) (z+1
" r’dFw)lro—pu+1) \z—-1
z+1\" zF1
Fi{—n,— 01 s —, 2.2
X(2)21(n nF¥u $uzi1> (2.2)

with either upper or lower signs chosen. Both hypergeometric functions in Eq.2.1 are

proportional to the Jacobi polynomial [23,25] P,ffu e (z); in terms of the latter, one
has

! + 1)\
Pl(z) = T _"M D (j — 1) P (7). (2.3)

Combining this with the Rodrigues-type formula for the Jacobi polynomials, which is

1 n
@—n”@+nﬁd

PO = dz"

[z— D"+ D", 24

leads to the following Rodrigues-type representation of P}’ (z):

1 z— 1\* a . .
Rﬂm:ZTm—M+D(z+J o le= D ey @)

The function P} (z) is single-valued in the complex z-plane with a cut along the real
axis from —oo to 1. For a negative integer degree, the associated Legendre function
of the first kind is defined through the relationship

Pr, (@) = P}(). (2.6)
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For the sake of later applications, it is convenient to rewrite Eq.2.1 as

Pl = D)

FrnFu+1) (z+ 1)”/2

Fn—p+1) \z-1
S k (k + n)! s 1\
" g(i) k!(”—k)!r(k:Fu+l)( 2 ) (2.7)
and Eq.2.2 as
w/2 n
P#(z)=n!r(n+u+1)(z+1) (z:l:l)
z—1 2

n k
<> ! (ZqE ) . 28)
S — I EF o+ DE—kEpu+ D) \z %1

From either of Eqgs.2.1, 2.2, 2.7 or 2.8, the function P/ () is seen to possess the
reflection property

Pi(2) = (—)"%Pﬂ(—z). 2.9)
If & = +m, then it holds that
P"@) =0 (m>n), (2.10)
P (=2) = (2)"P"(2)  (0<m<n), 2.11)
P (2) = %Rﬁ"(x) (0<m<n). (2.12)

If 0 < m < n, from Egs.2.7 and 2.8 we have

. 21\ (k +n+m)! e 1\
P, (Z)=( 2 ) Zky(k+m)!(n—m—k)!( 2 )

k=0
0 <m<n), (2.13)
moo o aEm (2N (k+ ) 2+ 1\F

Pr@ =) (n—m)! (z— 1) g(_) kl(k +m)!(n — k)! ( 2 )

O <m<n), (2.14)

m/2 n
P,f”(z)zn!(n+m)!(iii) (Z:;Zl)
n—m 1 T 1 k
x 2 Kk +m)!n — k) —m — k! (z £ 1) Osms<m), 215

k=0
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and also

o —1\"* k +n)! ~n\*
P (Z)z(z+1) Zk!(k—l—m)!(n—k)!( 2) Osm<n), (216)

m/2
—m __(_\ntm (n m)! ( — 1)
B @)=

v (k+n+m) z+1\*
XZ()k,(ker),(n_m k)‘( ) O<m<n), @17

m/2 n
omve-m () ()

n—m 1 T 1 k
x Z Kk + m)l(n — K)ln —m — k! (zil)

(0 < < n). (2.18)

For m > n, the same equations yield

I s A e (k + n)! z—1\F
P (Z)_(z+1) ék!(k—i—m)!(n—k)!( 2 ) (m>n), (2.19)

pom B 1 (Z—l)m/2
n = i —a— D e

Lk +mlm —k — D! (24 1)
x 2 K — b ( 5 ) (m > n), (2.20)
k=0
—m(,y — n! 2= 1\"? (z4+1)"
P, (Z)—(m—n—l)!(z-H) (T)
c _k(k—i-M—n—l)! z—1 k
X g( ) k'(k +m)!(n — k)! (Z+1) (m >n), (2.21)

and

pm B ; n! Z_l)m/z (Z_l)n
@ =0) (m—n—l)!(z+l 2

S _y\k (m—k—1)! z+1 k
X;Z(;( )k!(”—k)!(n+m—k)! (Z_l) (m>n). (222)

In deriving Egs.2.20-2.22, the formula
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'n+wu+1) _ (_)n+n/(m —n' =1

im ——M— (m > n,n’) (2.23)
u—=—m I(m +pn+1) m—n-1)!

appears to be useful.
Following Hobson [12], on that part of the cut for whichz = x (—1 < x < 1) we
define the associated Legendre function of the first kind of non-negative degree as

1r. )
Pi) = 5 [ewﬂ PH(x +i0) + e A2 pi(x — 10)]

= T2 PR (x 4 i0). (2.24)

2.2 The associated Legendre function of the second kind of integer degree

The associated Legendre function of the second kind of a non-negative integer degree
n and an arbitrary complex order 1 may be defined by either of the two expressions:

T elTh Fn+pn+1)
" — 1 _ M
01 () = > S [Pn (2) T 1)Pn (Z)], (2.25)
T T
18 — M — (=Yt pH(_
0, () = > S [Pl(z) — (5" Pl (—2)], (2.26)

equivalence of which follows immediately from Eq. 2.9. An extension of the definition
to negative integer degrees is made via the formula

i

0" (2)=—0"@z) + 7 PH(2). (2.27)
sin(7r )
One obtains
“ _m e B FTn+pu+1) _, }
Tao1(@ = 2 SnGr) [P,, (2) + —F(n 1D P, "(2) (2.28)
and
K _r s Iz _\pR(_
0,1 = 2 St [Pl (2) + (5" Pl(—2)]. (2.29)
From Eq.2.25 it is seen that
_ _ 'h—p+1)
Iz — a—i2mp M
0,"()=¢e NCETEN) 01 (2). (2.30)

It should be observed that the function Q" »—1(2) does not exist if u — n is a negative
integer or zero. The functions QJ (z) and Q" +—1(2) (provided the latter exists, see
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above) are single-valued in the complex plane with a cut along the real axis from —oo
to 1.
For0 <m < n,itis known? (see [18, pp. 81, 82, and 85]) that

1
T wr 0<m<n), 2.31)

m _1 m
0@ = 5Pl @ I~

with

W (2) = %wf(n Fm+ D4y —m+ DIP"E)

ek (z+1)m/2mz‘(_)k(k+n)!(m—k— 1! (z— 1)k
> 1) = kl(n — k)! 2

Z

L(n+m)! (z—l)m/2 o (ko Yk +m+ 1) (z—l)k
k=0

S 2m—m \z+1 k!(k +m)!(n — k)! 2
(P m/z”i”f k+n+myk+1) (z—1)\

5( 4 ) k:Ok!(k+m)!(n—m—k)!( 2 )

O <m<n) (2.32)

or

1
Wili() = =5t m+ D+ —m+ DIP ()

(—)ntm (z - 1)’"/2’"‘1 (k+m)lm—k—1)! (z + 1)"
2 2+ 1 Kl(n — k)! 2

_l’_

k=0

(=)' (n+m) (z+1 m/zz”:(_)k(k+n)!w(k+m+1) 24+ 1\F
2 m—m! \z—1 i Kk +m)ln —k)! \ 2

L (Z24_ 1)'"/2 ’g(_)kk(‘k +n +'m)!1//(k + 1)‘ (z + 1)"
= Wk +m)!l(n—m—k)! 2

2
O <m < n). (2.33)

3 In[18, pp. 81, 82, and 85] expressions for Q' (z), equivalent to these following from our Egs. 2.31-2.33,
have been given in somewhat different forms (in this connection, cf footnote 2). We have modified Robin’s
formulas to make them concurrent with the notation used in the present paper.
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Another expression for W | (z) may be deduced from the findings of Brown [41]; it
is

. (=" (24 I\ k)l m—k— D (2= 1\
W@ === (z—l) ;(_) ki(n — k)l ( 2 )

P (z - 1)’”/2'"‘1 (k +n)l(m —k — 1)! (z + 1)’<

2 \z+1 e K — k) 2
_1(z2—1)m/2"z’:" k+n+myk+1) (z—l)k
2 4 = kl(k+m)!(n —m — k)! 2

+(_)n+m (22;l)m/2r§1(_)kk('k+n+'m)!w(k+1)' (Z+1)k
= k+m)(n—m—k!\ 2

2
(0 < m<n). (2.34)

Furthermore, Snow [13, pp. 55 and 56]* gave a representation of W," | (z) which may
be easily shown to be equivalent to

1 I\ (z£1)"
W' (z) = £=n!(n + m)! (z T 1) 5

1
X Kk +m)l(n—k)(n—m—k)! [Y(n—m—k+1)

= N
3

~
Il
S

zF1 k
+w(n—k+1)—1//(k+m+1)—1/r(k+1)]( )

z+1
1 +1\"/? 1\"
+ o t+m) Z tF
2 zF 1 2

m

L (k= 1! <1\
Xg( A R —y—— Y (zil)

()" 2= 1\ (1)
F n!(n+m)!(z¢l) ( 5 )

m—1 k
i (m—k=1) 21
x kz=0( TS Te— (zil) O<smsn. 235

4 The associated Legendre functions defined in that book differ from the counterpart functions of Hobson
[12] used in the present paper. The relationships between the two sets of functions are: [P# (2)ISnow =

[P+ +1)/TW—p+ DIP, " (2) and [QY (D) Isnow = e~ cos( ) O (2).
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Exploiting Eq.2.31 and either of Egs. 2.32-2.34, Q""" (z) may be evaluated using

(n—m)!

Q; (Z)=m

o (0<m<n), (2.36)

which is the direct consequence of Eq.2.30. The functions Qf;”f 1@ with0 <m < n
do not exist.
For m > n, it holds that [18, Eq. 63, p.35]

="

3 n+m)lm—n—1) [Pn_’"(—z) —(=)"p" (z)] (m > n).

(2.37)

0, (2) =

The function 9, (z) with m > n does not exist.
On the cut x € [—1, 1], again following Hobson [12], we define the associated
Legendre function of the second kind of non-negative and negative integer degrees as

1, ~ . ~ .
0 (x) = Ee—w [e—*”“/ZQ;;(x +i0) + eTH/2 O (x — 10>] (2.38)
and
1 : ‘
0", (0 = ST [eHRQE | (x +i0) + 20", (r—i0)]. (2:39)

respectively.

3 The derivatives d P} (z)/dp and d PL (x)/dp
3.1 General considerations

We begin with the observation that after differentiating Eqs.2.6 and 2.9 with respect
to u, one arrives at the following two general relations involving the derivative in
question:

0PL, 1) _ 9P @

o T oap
ap, "

T(Z) Wt D) =+ DIPR)

T(n—p+1) 0P (—z2)
=" . 3.2
o )F(n—l—u—i-l) I (3-2)

3.1)

Because of Eq.3.1, in the remainder of the paper we shall focus on evaluation of
IPy (2)/0pe.
We proceed to the construction of several explicit representations of d P} (z)/d 1.
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At first, we observe that from Eq.2.5 we have the Rodrigues-type formula

Py (2) 1
= DY e A —
o 1 DB QY S =D
~1 e d +1
x (; 1) g [(z— D"z + 1) In i_—l] (3.3)

This may be rewritten as

Py (z) 1
aw 1

(34)

with

1
Ut @) = —Pf@)n L Y-+ DR

1 z—1\*? a» z+1
— R D" 1n .
Ty rEy (z+1) dz" [(Z EED 1}

(3.5)

Next, choosing in Eq.2.7 the upper set of signs and differentiating the equation
with respect to u yields d P, (z)/du in the form (3.4) with

v (Vs kY —p+ ) (2-1)F
U"(Z)_(z—l) ;k!(n—k)!l“(k—,u+l) 2 : (3.6)

An alternative formula for U/ (z) is obtained if in Eq.2.7 one chooses the lower set
of signs and then differentiates with respect to w; this results in

r 1 1\ #/2
UG = [+ i+ 1)+ ¥ — o+ DIPE) — (- Tt )(z+ )

'h—p+1DH\z—-1

n k
XZ(_)k k+m)yk+p+1) (z—i—]) 37

Kn— Tk +p+1) \ 2

Playing with Eq.3.7 with the aid of Eq.2.7 (with the lower signs chosen) and of the
following easy to prove identities:

Fn+p+1) (_)n+n’ C(—n' — )

—_— = (3.8)
L +p+1) L(=n—p)

and
Ym+pu+D) -0 +u+ 1) =y (—n—p) —y(—n"—p (3.9)
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leads to

Uf@=y0n—pn+1D+y(—n—wlP ()

- 1 (z+1)“/2
Fn—p+ DI (n—pn) \z—1

n

‘3 (k + )T (—k — )y (—k — ) (z + 1)k
kl(n — k)! 2 )

(3.10)
k=0

Furthermore, differentiating Eq.2.8 with respect to u gives

/2 n

k
XZ YkhkFu+D)—vhr—ktpu+1) (Z:Fl),(&ll)
Kt — k)T khFpu+ DI —k+pn+1) \z+1

k=0

Manipulations with Eq.3.11, similar to those which have led us from Eq.3.7 to
Eq.3.10, give

) ) - ) ! 741 /2 Z+1)n
Uy @) =y (—n “)P"(Z)+F(—n—li) (2_1) 2

" L I'k—n—p)
Xg( =Tk =t D)

—1\*
X[I/f(k—u+1)—¢(k—n—u)](z ) (3.12)
z4+1

or

n n! 24+ 1\ (2 —1\"
U#(Z):¢(—n—M)P#(Z)+(_) L(—n —u) (Z_l) ( 2 )

Y (k- p)
Xé( =PI —k—p D)

2+ 1)\
X[W(n—k—MJr1)—&(—k—u)](z_1) , (3.13)
according to whether the upper or the lower signs are chosen in Eq.3.11.

Finally, let us look at Egs.2.7 and 3.6 which give the functions P} (z) and U} (z),
respectively. It is seen that both these functions are of the form [(z + 1)/(z — /2
times a polynomial in z — 1 of degree n [except for the case of 4 = m > n, when
P} (z) vanishes identically, see Eq.2.10]. Consequently, if i 7 m, it must be possible
to represent U (z) in the form of a linear combination of the functions P,f (z) with
degrees not exceeding n:
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Ul(z) = D ch PL(2) (3.14)
k=0

[in the case of i = m one may seek Uy, (z) in the form of an expansion analogous to
(3.14) but with P,f (z) replaced by Pk_” (—z); cfalso Eq. 3.24]. Comparing coefficients
at (z — )*[(z + 1)/(z — 1)]*/? in Egs. 2.7 and 3.6, we see that the coefficient ch, in
the above expansion is

o=y —pu+1). (3.15)

The reasoning leading to determination of the coefficients cﬁfk withO <k <n-—11is
as follows. If we differentiate the well-known Legendre identity [23,25]

2

1—2?

d , d
|:—(1—Z )—+nn—+1)— :|P,ﬁ‘(z)=0 (3.16)
dz dz

with respect to p, this yields

2 I

-2 Lam+
4q_29 -
iz “az 1—2] op  1-22

On exploiting the identity (3.16), we also obtain

2 71 1 dpt
2:| 5P#(z)1n2+ -9 n(Z)' (3.18)
Z

z—1 dz

uw
1—

[i(l— 54w+ -
dz Sz e

By subtracting Eq.3.18 from Eq.3.17, we find that the function U} (z) satisfies the
inhomogeneous differential equation

Using the relationship
LRI
dz 1—z2"
= nz_{(_)kw@k +1) |:1 (= )ktn ?EZ i’ Z I 3£§Z ; ZI 3:| P,f(z), (3.20)

k=0
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derived in Appendix A, we rewrite the differential relation (3.19) as

2

1—2z2

[341— 4 - ]UW)
dz Zdz s n &

5 FTn+p+ Dl k—p+1)
— _\k+n Nk .
— g( ) (2k+1)[1 (-) F(”—M+1)F(k+u+1)}Pk . (21)

On substituting the expansion (3.14) into the left-hand side of Eq.3.21, after equating
coefficients at Pk“ (z) on both sides of the resulting identity, we obtain

(ki 2k 41 |:1_(_)k+nF(n+/L+1)F(k—pL+1)}
nk = (n—kyk+n+1) T'n—p+DGk+u+1)
O<k<n—1. (3.22)

Plugging Eqs. 3.15 and 3.22 into Eq. 3.14, we arrive at the following representation of
Ui (2):

! 2k +1
() — — HPH -kt
Uy@=ymn—un+1) n(Z)+g( ) m—k)k+n+1)

Xp_Gyﬂrm+u+nrw—u+n

n
F(n—p+ DIk +p+ 1)] Py (). (3.23)

With the use of the property (2.9), the above result may be transformed into

UM 2) = ¥(n — i+ DPLR)

n—1
2k 41 Frh+p+1) _ }
k+n 2 n w
+ - P(D)—(-)!'—/—P, "(—2)|.
Z;( ) (n—k)(k—i—n—i—l)[ C @O T e 09
(3.24)
The last expression is of value when 0 < u =m < n.
3.2 Evaluation of [d P (2) /1] u=m
3.2.1 The caseof 0 <m < n
For i = m, the fundamental equation (3.4) becomes
Py 1 1
@ Lpmy it uny 0<m<ny. (325
ou =m 2 z—1
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It follows from Eq. 3.5 that the Rodrigues-type representation of U, (z) is

+1
U@ = ~B' @I 49— m+ DE]'Q)
1 z—1\"* a z+1
. _1n7m 1n+m1
+2”(n—m)! (z+1) dz” |:(Z e+ nz—l]
O <m<n). (3.26)

If in Eq. 3.6 use is made of the well-known limiting property

i Yk —pn+1)
im

TR yktm L
p—m T(k — p + 1) (=)m—k—-D! (m>k) (3.27)

and if, whenever necessary, the gamma function is replaced by the factorial, after some
straightforward manipulations we obtain the following representation of U, (z):

. (2N k) m—k =D (7= 1\F
U@ =0) (z—_l) é(_) kl(n — k! ( 2 )

2 m/2 n—m | .
+(z 1) Z(k—l—n—}-m).w(k—i-l) (z 1

k
) O <m<n).
4 kl'(k+m)!(n —m — k)! 2

k=0
(3.28)

Similarly, from Eq.3.7 it follows that

U@ =Ym+m+1)+vm—m+ DIP)(2)
(n + m)! (z + 1)"”2 i(_)k (k+m)Yr(k +m + 1) (z + 1)"
k=0

) n—m)! \z—1 kl(k +m)!(n — k)! 2
O <m<n). (3.29)

Furthermore, from Eq.3.11 one finds

m/2 n
Up(z) = Y (n+m+ P (2) + (=)"nl(n + m)! (i f 1) (Z er 1)

m—1 k
i (m—k—1)! z—1
x ;( TS T — <z+1)

—nl(n 4+ m)! e )" (k1Y
’ ‘\z+1 2

X’f Y —k+1) —yhk+1) (z—l
kK\(k+m)\(n—k)!(n—m—k)! \z+1

k
) O <m<n) (3.30)
k=0
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and

z+1 2

S (k= D! 2+ 1\
* ;( ) (k+m)!(k +n —m)!(m —k)! (z—l)

4 nl(n + m)! z+1 m/2 z—1\"
’ ‘\z—-1 2

Xrlz_’:nl,[/(n—m—k+1)—l//(k+m+1) (z+1
kK\(k +m)\(n —k)'\n—m —k)! \z—1

-1 m/2 1 n
U'T(Z):"’(’“””JF1)1",2"(@+n!(n+m)!(Z ) (Z+ )

) O <m<n).
k=0

(3.31)

Finally, from either of Egs. 3.23 or 3.24, with the aid of Eqgs. 2.13-2.15, one deduces
that

Mmoo _ moy (n +m) X 2k + 1
Up'(2) = ¥ (n —m + DP"(2) Z( sy L
n—m—1
_\ktntm 2k +2m + 1
* kg;( ) n—m—kyk+n+m+1) Pén@  O<m<m
(3.32)
or equivalently
mey _ _ m _(n+m) X 2k + 1
U@ =vin=m+ DE@ Z( S ha a7
n—m—1
_\ktntm 2k +2m + 1
+ g( ) m—m—-~k)yk+n+m+1)
k!(n +m)!

3.2.2 A closer look at the case of m = 0
Setting u = 0 in Eq.3.17 results in

APy (2)
ou

=0, (3.34)
n=0

[3(1— 5L +1)}
dz Z dz nn

ie., [0P)(z)/ou] u=0 solves the same differential equation as the Legendre poly-
nomial P,(z) = P,? (z) does. Consequently, it must be possible to write it in the
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form of a linear combination of P, (z) and the Legendre function of the second kind

04(2) = 0)(2).

To find that combination, at first we observe that for m = 0 Eq.3.25 becomes

Py ()
B/L u=0

z+1

+U%(z). (3.35)
z—1

1
= EP,,(Z) In

From Eq.3.33 we see that U,? (z) is a polynomial in z of degree n, which may be
written as

UY(@) =¥ (n+ DPy(z) — Wyoi1(2). (3.36)
Here W,,_1(z) is a polynomial in z (of degree n — 1) given by

n—l k+n
R ) 2k +1
W%wm—zg% o hi @ (337)

or equivalently

int[(n—1)/2] on — Ak — 1

Wi—1(z) = é mpn—Zk—l(Z)- (3.38)

A glance at Eq. 3.38 reveals that W, _1(z) is the well-known Christoffel’s polynomial
(cf, e.g., [14, p. 153]), in terms of which one has [23,25]

On(2) = an(Z) InZ 1 - Wy1(2). (3.39)
2 z—1

On combining Eqs. 3.35, 3.36, and 3.39, we obtain the sought relationship” [cf Eq. 1.1]

IP; (2)
a:u‘ n=0

=Y+ DP(2) + On(2). (3.40)

The same result may be obtained if one couples Eq. 3.2 with Eq. 4.1, both particularized
to the case of m = 0.

5 The counterpart relationship (see [23, p. 178])

0N (2)
B[L =0

=lir +y¥(n+D]0n(2)

follows straightforwardly from Eq.2.30 after differentiating the latter with respect to u and setting then
n=0.
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3.2.3 The case of m > n

In this case, the function P,)"(z) vanishes identically [cf Eq.2.10], so that Eq.3.4
becomes

APy (2)
ou

=U"z) (m>n). (3.41)

u=m

With the help of Eq.3.27, from Eq. 3.6 we find

1\"? k lm—k — 1! [z—1\F
U () = (- (” ) S (e L ) (Z ) (m > .
k=0

z—1 kl(n —k)! 2
(3.42)
Comparison of Eq.3.42 with Eq.2.20 reveals the relationship®
U)'(z)=()"mn+m)m—n—DIP,"(—z) (m>n). (3.43)

Consequently, from Eqgs. 3.41 and 3.43 one obtains

APy (2)
e

=) "m+mm—-—n—DIP"(—=z) (mn>n). (3.44)

n=m

3.3 Evaluation of [8P,ﬁL(z)/8u]u:_m
3.3.1 Thecaseof 0 <m < n

For © = —m, Eq. 3.4 becomes

Py 1 1
n (2) =—-P,"(2)In it +U,"(2) 0 <m < n). (3.45)
o pi=—m 2 z—1
Since it holds that
Py ap, "
w (2) —_ ' (2) ’ (3.46)
Em n=—m 8“ n=m

6 The result (3.43) may be also deduced from Eq. 3.24. Indeed, it is seen that in the case considered here the
summand in the latter equation vanishes identically and only the first term on the right-hand side survives.
Further, in virtue of Eqs. 2.9 and 3.27 (with k replaced by n), we have

Jim yn =+ DR = ()t m)lon —n = DIPT D) m > ),

hence, Eq.3.43 follows. Still another way of arriving at Eq. 3.43 is to use Eq.3.5.

@ Springer



J Math Chem (2009) 46:231-260 249

from Eqgs. 3.45, 3.2, and 3.25 it may be inferred that

U@ = (- )”*‘E"WL—;,U'”( D+ +m+ D)+ Y —m+ DIP(2)
O <m<n). (3.47)

One may couple this formula with Eqgs.3.28-3.33 and exploit, whenever necessary,
Egs.2.11 and 2.12 to obtain various explicit representations of U, ™ (z) with
0<m<n.

3.3.2 The case of m > n

From Eq. 3.4 we find

1
2 Fn 1

APy (2)
e

() (m > n). (3.48)

p=—m

Equations 3.6, 3.10, 3.12, and 3.13 supply us with the following alternative represen-
tations of U, ™ (z):

_\"2X TN
U "™(z) = (Z 1) > G+ r)yltm+1) (Z 1) m>n), (349
k=0

2+ 1 Kk +m)!(n — k)! 2
U, "@=yn+m+1)+¢(m—n)]P,"(2)

. 1 (z—l)m/2
m+m)im—n—ND'\z+1

5 Z k +m)m —k — DIy (m — k) (z+ 1)"

(m > n), (3.50)

et Kl(n — k) 2
G == 1)W2 ()
X et L e+ )
— Yk +m—n)] (%)k (m > n), (3.51)
U™ () = ¥(m—n)P,"(2) + (=) = —Z!— o (i J_r 1)”1/2 (Z ; 1)n
x Z( )kk'(n - )!(i tm - Tyt m =kt
— Y (m — )] (” i) (m > n). (3.52)
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Moreover, with the aid of Eq.2.23, from Eq.3.23 we obtain

U,"(@) =y n+m+ 1P, ")

n—1
_\kdn 2k +1 [ B (k+m)!(m—k—1)!] Y
+kz_(;() (n—kyk+n+1) ! n+m)lm—n—1)! P (@)

(m > n). (3.53)

3.4 The derivative d P} (x) /o

Since [cf Eq. 2.24] the definition of P}‘ (x) with —1 < x < 1 differs from that of P}’ (z)
with z € C\[—1, 1], the derivative d P} (x)/du requires to be considered separately.

Differentiating Eq.2.24 with respect to u, making use of Eq.3.25 and exploiting
the fact that

x+1+i0=1+x, x—142i0=e™1—-x) (-1<x<1) (359

results in

APN(x) 1 14+ x
;u = EP,i‘(x)ln T+ Uk (x), (3.55)

where, in analogy with Eq.2.24, we define

UM (x) = [ei”WU,’;(x +i0) + e TH2U M (x — 10)] = eHTH2Y 1 (¢ £ 10).

(3.56)

| =

Various representations of Ul (x) and Unim (x) arise if one couples Eq.3.56 with the
formulas for U/ (z) and U,f”” (z) derived in Sects. 3.1 to 3.3 (now particularized to the
case of z = x £10).

4 Applications

4.1 Construction of the associated Legendre function of the second kind of integer
degree and order

As the first application of the results obtained in the preceding section, below we shall

construct several explicit representations of the associated Legendre function of the
second kind of integer degree and order.
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4.1.1 The functions Q,jfm (z) inthe caseof 0 <m < n

Ifin Eq.2.26 we let u approach £m, after applying the 1’Hospital rule to the right-hand
side, we obtain

i 1PN (@) ()P (=)
Q@ = 2 2 o

O<m<n). @.1)

n==+m n==+m

Combining this with Eq.3.3 gives the following Rodrigues-type representation of
03" (2) with 0 < m < :

0,"(z) = —
1 z—1\"?* @ m i+l
_ 1n+ml
R TRy (z+1) dz” [(Z P+ -1
1 2+ 1\"? @ 241
-1 n+m nrm]
e T (z—l) dz" [(Z e+ nz—l]
0 < m < n. 4.2)

For m = 0, Eq.4.2 reduces to the well-known (e.g., [25, Eq. 8.836.1]) formula

[( ~ "I it i] . (4.3)

Upon making use of Eqgs.3.4 and 2.11, Eq.4.1 implies that

z+1 1 d"
——P |
On(2) = (2) Nt St g

0" (2) = ;P,f’% ) In ii — W) (0<m <), (4.4)
with
W (z) = % [()"UF" (=) - Uf" (2] 0 <m<n). 4.5)

From Eq.4.5 it is seen that

Wi (=) = "MW@ 0 <m<n), (4.6)
i.e., the parities of W 1(z) are opposite to those of P7"(z). In view of the symmetry
relation
(n—m!.,
W " () = " +m)' " (0<m<n), 4.7

which is the consequence of Eqgs.4.5, 3.47, and 2.11, henceforth we shall discuss
W, | (z) only.
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A number of explicit representations of W , (z) may be obtained if one couples
Eq. 4.5 (with the plus signs chosen) with Eqs. 3.28-3.33. For instance, if U, (—z) is cal-
culated using Eq.3.29, while U} (z) is taken in the form (3.28), then Eq. 2.32 is recov-
ered. Conversely, if U] (—z) is obtained from Eq.3.28 and U, (z) from Eq.3.29, this
results in Eq. 2.33. If in Eq.4.5 both U]"' (—z) and U] (z) are obtained from Eq. 3.28,
one recovers the Brown’s formula (2.34), while if both U} (—z) and U] (z) are derived
from Eq. 3.29, one arrives at

1 (n+m)! (z— 1)”’/2 L k+m)Wk+m+1) (z— 1)’<

Wn—l(Z)z_E(n_m)y Z+1 kl(k +m)!(n — k)! 2

(=) (n + m)! (z + 1)’"/2 Z":( e kA Yk A m 1) (z + 1)
2 (1 —m)! Kk +m)ln—k)! \ 2

O <<m<n). (4.8)

+

That of the two Snow’s representations which corresponds to the choice of the upper
signs in Eq.2.35 follows if in Eq.4.5 U)"(—z) is found from Eq.3.31 and U,"(z)
from Eq. 3.30; the other one is obtained if the roles played by Eqs.3.30 and 3.31 are
interchanged.

An apparently new representation of W™ | (z) follows if in Eq.4.5 both U} (—z)
and U, (z) are found from Eq.3.23. Proceeding in this way, with the aid of Eq.2.11,
one finds

1 e 2k + 1
@) = 3 SIS ) a [P (=2 — ()" P ()]
" k=0

2(n m)'k n—kyk+n+1)
n—m—1 k++n+m
1— (- 2k +2m + 1
DI ’”
= 2 m—m—-—k)k+n+m+1)

k!(n + m)!
(k 4+ 2m)!(n — m)!

x [1 — (—)ktnim }P,:’im@ O<m<n). (4.9

It is seen that the summand in the second sum on the right-hand side of the above
equation vanishes if k + n + m is even and therefore Eq.4.9 may be rewritten more
suitably as

1(n+m) . 2k + 1
(n—m)! z( ) n—kyk+n+1)

1()— [P (=2) = ()" P (2)]

n

+

ill—( yktntm 2k +2m + 1
m—m—-~kbk+n+m-+1)

~

=0
| k!(n + m)!
[ (k + 2m)!(n — m)!

+

} Pl (@ (0<m<n). (4.10)
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Manipulating with the second sum, Eq.4.10 may be cast into

W 1(2)=

l(n+m)!mz_l_k 2%k + 1
20 —m! & =Rkt 1)

int[(n—m—1)/2]

[P (=2 — ()P " (2)]

L] 4k —1
2 & -kt D)

X|:1+(n+m)!(n—m—2k—l)‘

n—m)l(n+m—2k — 1)yi| k1@ (O <m < n). (4.11)

It is seen that in the case of m = 0 Eqs.4.10 and 4.11 reduce to Eqs.3.37 and 3.38,
respectively.

4.1.2 The functions Q' (z) and Q™ _,(z) in the case of m > n

n—
Proceeding as in Sect.4.1.1, from Eq. 2.26 we obtain

1 aP“(z) ("R (D)
YU - 2 ol

0, (@) = (m > n). (4.12)

w=m

If use is made here of Eq.3.44, this yields Eq.2.37. Next, for the function Q"' _,(z),
from Eq.2.27, with the aid of the I’Hospital rule, we have

AP} (2)

07,10 =-0,)+ —— on

(m > n). 4.13)

p=m

From this, after merging with Eqgs.2.37 and 3.44, we find

()’”

0", ()= (n+m)lm—n—DP"(=2)+ (9)"P,"()]  (m>n).

(4.14)
4.1.3 The functions Q™ (x) and o" 1 (x)

Inserting Eq.4.4 into Eq.2.38, the latter being particularized to © = =£m, with the
help of Eq.2.24 we obtain

Q™ (x )- M (x) (0<m < n), (4.15)
where we define
m
W (x) = % (¥ W (x4 10) + 5T PWE ( —i0) | 0 <m < ).
(4.16)

@ Springer



254 J Math Chem (2009) 46:231-260

It follows from Eqgs.4.16 and 4.6 that the functions W 1(x) possess the reflection
property
W (—x) = (=" "W () 0 <m <), (4.17)

n—1

while if Eq.4.16 is coupled with Eq.4.7, this results in

m m P —ml
W, 5 (x) =(—) m W) (0<m<n). (4.18)

The latter relationship allows one to focus on W,:’L] (x) only.

Exploiting the expressions for W, (z) found in Sect.4.1.1, with no difficulty one
may construct counterpart formulas for W, | (x). For instance, if Eq.4.16 is combined
with Eq.4.11 and use is made of Eq.2.11, this yields

" 1(n+m)! % 2k + 1 P —
Wil = 3 ),Zm(n_k)(HnH)[Pk (=x) = ()" P ()]

int[(n—m—1)/2] o — Ak — 1

1

2 P n—k)Qk+1)
(n—i—m)’(n—m 2k — 1)!
(n—m)!(n+m 2k — 1)!

+

i| Lok () (0 <m < n).
4.19)

If Eq.2.37 is used in Eq.2.38, one finds

(—)’"

(n+m)lm —n — D[P, (=x) = (=" P" ()] (m>n),
(4.20)

0, (x) =

while if Eq.4.14 is coupled with Eq.2.39, this gives

m

(n+m)lm —n— D[P, (—x) + (=)"™P;"(x)] (m>n).
421

Qlfn_l(x)— « )

4.2 Evaluation of [82P#(z)/8u2]u:m form > n
In this section, we shall show that if m > n, then the knowledge of [P} (—z)/

op]=—m allows one to find [02pY (z)/B,LLZ]M:m.
We begin with the observation that from the identity

V(&) =y =¢) =cos(xH)IN(OHT (A = &), (4.22)
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which may be easily deduced from elementary properties of the digamma and gamma
functions [14,20,23,25,40], one finds that

Yin—pn+1D=9@—n)+ () cos(ru)T(p—mlrn—pn+1). (423)

The identity (4.23) allows one to rewrite the relation (3.2) in the form

aPn—M(Z) _ F(l’l -+ 1)
_— 1 - ’ =)'
o Wt p+ D+ 9 =mIP @ + (' g ==
AP, (—2) —H
x [T —cos(mu)l'(u —m)I'(n+pu+ 1P, (Z):| g

(4.24)

hence, it follows that

P, " (2) m
— =—[Yn+m+1)+y(m—n)]P, " (2)
ou L=m
i lim [F(I’l—pb—l— 1)
(n 4+ m)! u—m
Py (-
X |:88—,4(LZ) —cos(mu)'(uw —nm)F'(n + n + l)Pn_“(z)“
(m > n). (4.25)

The limit in the above equation may be evaluated with the aid of the 1’Hospital rule
[for this purpose, the property (3.27) proves helpful] and one finds

3P, " (2)
ou

P " (2)

=2[Yy(m+m+1)+y(m—n)P,"(2)— o

pu=m

n=m
()" 9Py (—2)
m+mlm—n—-10"  9u?

(m > n). (4.26)

w=m

If Eq.4.26 is solved for [82P,f(—z)/8u2]u:m, then use is made of Eq.3.46 and z is
replaced by —z, one eventually arrives at

2 plh
% = (=)"2(n+m)!(m —n — 1)!
T -
M —
X[[W(n-i-m—i—1)+1p(m_n)]pn—m(_z)_M }
o p—
on = . (4.27)

Several explicit representations of [02 P} (2) /0 ,uz] u=m With m > n, not listed here,
follow if one combines Eq.4.27 with the results of Sect.3.3.2.
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4.3 Evaluation of [0 Q) (z)/dt]u=m and [0Q" | (2)/0p]=m form > n

The results of Sect. 4.2 may be exploited to express the derivatives [0 04 (2) [ u=m
and [0 Q’fnfl (z)/0p]y=m for m > n in terms of [BP#(j:z)/au]M:_m.

To show this for [0 Q% (z)/ o] u=m, we differentiate Eq.2.26 with respect to u,
obtaining

001 (2) 7

1. 9P} (2)
_ n i n
n 170y (2) + sin(m 1)

[— oS 0} (2) + 5

()" aP#(—z)]
— e .
2 I

(4.28)

In the limit @ — m > n, with the help of the I’Hospital rule and of Eq.4.12, from
Eq.4.28 we find

IO (2) i om 90 (2) 19%P; (2)
BRI P i e 2 g
128 n=m M pn=m K p=m
_\n aZPM _
. 2) % (m > n), (4.29)
12 n=m
hence, it follows that
00, Q| i omzy 4 L@
I |y " 4 |,
_\n aZPM _
. 4) % (m > n). (4.30)
/’L n=m

If the last two terms on the right-hand side of Eq.4.30 are transformed with the aid of
Eq.4.27 and use is made of Eq.2.37, this yields the sought relationship

N
8M n=m
(_)m | |
_ > n+m)!lim —n —1)!
wo 1
o |:3Pn (=2) . (_)naP" @) :| (m > n). 4.31)
a/“l' n=—m alj/ H=—m
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If one starts with Eq. 2.29 rather than with Eq.2.26, after movements almost iden-
tical to these presented above one arrives at

90", () .
—= | =l Yt m D+ Y —n)]Q”, 1 (2)
I =m
="
- n+m)lim—n—1)!
APy (— Py
« w (—2) + (_)n w (2)
M ly=m VLI P
(m > n). (4.32)
Appendix A: derivation of Eq. 3.20
We shall show how the expression
@ 2 pu
dz 12 ¥

may be developed into a finite sum of the functions P,f (z) with0 < k <n—1. At
first, we observe that it holds that

dPV(z) 2u B APy (2) " "
_2T+1 2 n ( ) [( - ) dz + +1P (Z) _I’ZP (Z)]
n
[( + 1)dP @, f P (@) = nP,f*(z)} .

(A.1)

If use is made of the well-known relation [23,25]
2 dP# (2) m
("= 1)———=nzPl' () — (n+ P, (), (A.2)

the expressions in the square brackets appearing on the right-hand side of Eq. A.1 may
be written as

dP,I,L(Z) w w I
T A
PY(z) £+ Pl
__mFWAQEeTWEL G (A3)
zx1

Consider next the recurrence relation [23,25]
2k + DzPf(z) = (k — u+ DPL () + (k4 ) P (2). (A.4)
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Evidently, it may rewritten as

Qk+ D)@+ DPR) =[tk—pn+DP @)+ k+u+ DHP()]
+ [k = Pl () + (k+ WP (2)]. (A.5)

Multiplying both sides of Eq. A.5 by (—)**”, summing over k fromk = Otok = n—1,
utilizing then the property [cf Eq.2.6]

Pé‘(z) = Pfl (2) (A.6)

and dividing the result by z + 1, we find

= 1) Py P!
P z+1

If on both sides of Eq. A.7 use is made of Eq.2.9, the former becomes

n—1
Fk+p+1) __,
2k+1)———P "(—
> k+ Ta—pgn b 9
k=0
F(n—l—u—i—l)P CH(—2) — P, 1( Z) (A8)
C'(n— ) z+1
From this, after replacing p with —u and z with —z, we infer
Pk—pt1) 0 T(n—pu+1) Py — P ()
2k + . (A9
Z( D r st @= T(n+ z—l (A9
Hence, it follows that
Fn+up+1) —u+1) pH
F(n—,u—i—l)z( + )F(k +1) P @
+ WPy () — (n+ pPL
=(n w) Py (2) (;1 ) ,,,l(z)_ (A.10)
7 —

Combining Eqgs. A.1, A.3, A.9, and A.10, we arrive at the sought expansion

AR

& +1_2Pn“(z)
n—1
_ _yk+n kP p+ DIk —p+ D]y
=> (=) <2k+1)[ O R T T DG T | H @ D

k=0
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which, apart from being useful in the present context, seems to be also interesting for
its own sake.

References

1.

Nk

®

20.
21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.
32.

1. Todhunter, An Elementary Treatise on Laplace’s Functions, Lamé’s Functions and Bessel’s Functions
(Macmillan, London, 1875)

N.M. Ferrers, An Elementary Treatise on Spherical Harmonics (Macmillan, London, 1877)

F. Neumann, Beitrdiige zur Theorie der Kugelfunctionen (Teubner, Leipzig, 1878)

E. Heine, Handbuch der Kugelfunctionen, vol. 1, 2nd edn. (Reimer, Berlin, 1878)

E. Heine, Handbuch der Kugelfunctionen, vol. 2, 2nd edn. (Reimer, Berlin, 1881)

R. Olbricht, Nova Acta Leop. Carol. Akad. 52, 1 (1887)

W.E. Byerly, An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal
Harmonics, with Applications to Problems in Mathematical Physics (Ginn, Boston, 1893) [reprinted:
(Dover, Mineola, NY, 2003)]

E.W. Hobson, Philos. Trans. R. Soc. Lond. A 187, 443 (1896)

A. Wangerin, Theorie der Kugelfunktionen und der verwandten Funktionen, insbesondere der
Lamé’schen und Bessel’schen, in Encyklopddie der mathematischen Wissenschaften, vol. 2.1 (Teubner,
Leipzig, 1904), p. 695

E.W. Barnes, Q. J. Pure Appl. Math. 39, 97 (1907)

. A. Wangerin, Theorie des Potentials und der Kugelfunktionen, vol. 2 (de Gruyter, Berlin, 1921)

E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge University Press, Cam-
bridge, 1931) [reprinted: (Chelsea, New York, 1955)]

. Ch. Snow, Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential

Theory, 2nd edn. (National Bureau of Standards, Washington, DC, 1952)

A. Erdélyi (ed.), Higher Transcendental Functions, vol. 1 (McGraw-Hill, New York, 1953), Chap. III
PM. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

J. Lense, Kugelfunktionen, 2nd edn. (Geest & Portig, Leipzig, 1954)

L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroidales, vol. 1 (Gauthier-Villars, Paris,
1957)

L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroidales, vol. 2 (Gauthier-Villars, Paris,
1958)

L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroidales, vol. 3 (Gauthier-Villars, Paris,
1959)

E. Jahnke, F. Emde, F. Losch, Tafeln hoherer Funktionen, 6th edn. (Teubner, Stuttgart, 1960)

A. Kratzer, W. Franz, Transzendente Funktionen (Akademische Verlagsgesellschaft, Leipzig, 1960),
Chap. 5

L.A. Stegun, in Legendre functions, ed. by M. Abramowitz, I.A. Stegun. Handbook of Mathematical
Functions (Dover, New York, 1965), p. 331

W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathe-
matical Physics, 3rd edn. (Springer, Berlin, 1966)

T.M. MacRobert, Spherical Harmonics, 3rd edn. (Pergamon, Oxford, 1967)

1.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Sth edn. (Academic, San Diego,
1994)

N.M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical Physics
(Wiley, New York, 1996), Chap. 8

A.P. Prudnikov, Yu.A. Brychkov, O.1. Marichev, Integrals and Series. Special Functions (Nauka, Mos-
cow, 1983) (in Russian)

A.P. Prudnikov, Yu.A. Brychkov, O.1. Marichev, Integrals and Series. Special Functions. Supplemen-
tary Chapters, 2nd edn. (Fizmatlit, Moscow, 2003) (in Russian)

Yu.A. Brychkov, Special Functions. Derivatives, Integrals, Series, and Other Formulas (Fizmatlit,
Moscow, 2006) (in Russian)

FE. Neumann, J. Reine Angew. Math. (Crelle J.) 37, 21 (1848) [reprinted in: Franz Neumanns gesam-
melte Werke, vol. 3 (Teubner, Leipzig, 1912), p.439]

Y. Sugiura, Z. Phys. 45, 484 (1927)

E.C. Kemble, C. Zener, Phys. Rev. 33, 512 (1929)

@ Springer



260 J Math Chem (2009) 46:231-260

33. J.C. Slater, Quantum Theory of Molecules and Solids, vol. 1. Electronic Structure of Molecules
(McGraw-Hill, New York, 1963), Appendix 6

34. J. Yasui, A. Saika, J. Chem. Phys. 76, 468 (1982)

35. J. Hinze, F. Biegler-Konig, in Self-consistent field. Theory and Applications, ed. by R. Carbd,
M. Klobukowski (Elsevier, Amsterdam, 1990), p.405

36. EE. Harris, Int. J. Quant. Chem. 88, 701 (2002)

37. Y.V. Vanne, A. Saenz, J. Phys. B 37, 4101 (2004)

38. H. Takagi, H. Nakamura, J. Phys. B 13, 2619 (1980)

39. M.A. El-Aasser, M.A. Abdel-Raouf, J. Phys. B 40, 1801 (2007)

40. PJ. Davis, in Gamma function and related functions, ed. by M. Abramowitz, I.A. Stegun. Handbook
of Mathematical Functions (Dover, New York, 1965), p. 253

41. G.J.N. Brown, J. Phys. A 28, 2297 (1995)

42. G.N. Watson, Proc. Lond. Math. Soc. 17, 241 (1918)

@ Springer



	On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)
	Abstract
	1 Introduction
	2 The associated Legendre functions of integer degrees
	2.1 The associated Legendre function of the first kind of integer degree
	2.2 The associated Legendre function of the second kind of integer degree

	3 The derivatives Pn(z)/ and Pn(x)/
	3.1 General considerations
	3.2 Evaluation of [Pn(z)/]=m
	3.3 Evaluation of [Pn(z)/]=-m
	3.4 The derivative Pn(x)/

	4 Applications
	4.1 Construction of the associated Legendre function of the second kind of integer degree and order
	4.2 Evaluation of [2Pn(z)/2]=m for m>n
	4.3 Evaluation of [Qn(z)/]=m and [Q-n-1(z)/]=m for m>n

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


